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ABSTRACT

The fractional form of the piano string Lagrangian density is presented using the Riemann-
Liouville fractional derivative. Agrawal procedure is employed to obtain equation of motion
in fractional form. The Hamiltonian equations of motion resulting from the Piano string
Lagrangian density are obtained. Conserved quantities are also derived using Noether's
theorem.
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1-INTRODUCTION

Most musical instruments produce tones whose partial tones, or over tones, are harmonic:
their frequencies are completely multiples of a fundamental frequency. The piano is an
exception. The vibrational properties for a piano string can be described by a set of
differential and partial differential equations derived from the general law of physics.S uch a
set of equations, which defines the instrument with a higher or lesser degree of perfection,
often referred to a physical modell1-5.

Antoine Chaigne3 started from the fundamental equations of a damped, stiff string interacting
with a nonlinear hammer, from which the time histories of a string displaced and velocity
from each point of the string are computed in the time domain. Historically, Hiller and
Ruiz4were the first to solve the equations of the vibrating string numerically in order to
simulate musical sounds.

Harvey FletcherSdeveloped the equations that govern the vibration of a solid string along

traditional lines.When a piano string is displaced a distance y at the position x, the restoring

2
force due to the tension Tis known to be T (3732’), and the restoring force due to the elastic
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4
stiffness is —QSK? (ZTZ)’ where Q is Young's modulus of elasticity, S is the area of cross

section of the wire, and K is its radius of gyration. Let o be the linear density and t the time.

Then, the equation governing the motion of the piano string is

-0k (52)+7(52) = 0 (32)

This is the form of the equation originally set up by Lord Rayleigh®.

An element of a piano string at equilibrium with length dx and a corresponding element of a
stretched piano string with length ds are shown in Fig. 1, where y and n are the transverse
and longitudinal displacements of the string, respectively. It was shown that by expanding
both y and n as a series of polynomials and truncating at third order, the added force per unit
length on the element in the longitudinal direction caused by the transverse displacement is

given byE,

Stretched string element

In this work, we will find equations of motion that are subject to the pianostring through the
Lagrangian density of the piano string. Then, we will rephrase these equations using the
definition of Left and Right Riemann-Liouville fractional derivative. We can also find some
other quantities that reflect the saved functions such as Hamiltonian and momentum and

other quantities using the definition of Riemann-Liouville fractional derivatives.

2-MATHEMATICAL TOOLS
Several definitions of fractional derivative have been proposed. These definitions include
Caputo, Riemann-Liouville, and GrUnwald-Letenikove and others. Here, we formulate the

problem in terms of left and right Riemann-Liouville7-14.
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Consider a function f(x), where this function depends on n variable (x = x, X2, ... ... ... Xn),
and is defined over the domain Q = [ay,b;] X ... ... X [an, by,]. The left and right partial
Riemann-Liouville fractional derivative of order a; with respect tox,, where 0 < a; < 1 are

defined respectively as’:

a _ 1 X f(X1, X1, U X 1) X))

( +ak f) (x) - r(l_ak) axk fak (xk_u)ak du (1)
a -1 by F(X1, X1, WX 4150 Xm)

( _ak f) (x) - r(l—ak) axk ka (u_xk)(lk du (2)

The above definitions contain various subscripts and superscripts that need to be made clear.
dx,f is the partial derivative of f with respect to the variable x,, the subscript (+) and (—)
indicate the left and right fractional derivative respectively, and the subscript k and the
superscript « indicate that the derivative is taken with respect to the variable x; and it is of

order a.

The action of the classical field containing fractional partial derivatives takes the form

S =[L(¢, -08$, +0¢d)d>xdt(3)
extremization of this action leads to the fractional Euler Lagrange equation of the form%-14

si + | 9% (ciem) 0% (cigm)| =0

for a=1, the last equation reduces to the standard Euler Lagrange

oL oL
-0

26~ n30a,g) = 00)

3-Piano String Lagrangian Density

An elastic Piano string can vibrate both longitudinally and transversely; and the two
vibrations influence one another. A Lagrangian that takes into account the lowest order
effect of stretching on the local string tension, and can therefore mode this coupled

motion, is £
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ﬁ—%(52+"2)—5<7+2—x+7> ©)

where &(x, t) is the longitudinal displacement and the n(x, t) is the transverse displacement
of the string; thus the point in the undisturbed string has coordinates [x, 0] is moved to the
point with coordinates [x + &(x,t) + n(x,t)]. The parameter . represents the tension in the
undisturbed string, 4 is the product of Young's modulus and the cross-sectional area, and p- is

the mass per unit length.

4-Classical Treatment of the Piano String Lagrangian Density
e Euler-Lagrange Equation
Consider the Lagrangian density £ = L(¢,, 0,¢,),r = 1,2,3,..n

Using variation principle leads to Euler-Lagrange equation:

) =0(7)

2 g, (2
dpr *\o(0a¢r)

Applying this equation in two fields in the piano string(£,,7,) Lagrangian density as
d (0L d (0L oL

2 (50) + & (5e) ~ 5 = 0®)

. 2 " A

¢—2. 6 +nn)=00)

And

() + &)~ =00
i— 2|5+ ¢+ 20" )0 + 0] = 0aD)

e Classical Hamiltonian Density
The Hamiltonian of the continuous system is given by

_ ot g
H =500 b —£12)
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Applying this definition to evaluate the Hamiltonian density resulting from Piano string

Lagrangian density, we obtained
2 az:é N oL . c
BETARTE

H=2(8+7?) +§(§+ §’+”2:)2(13)
e Canonical Stress Tensor
For invariant Lagrangian density,£, the invariance under translation of time leads to
conservation of energy. The invariance under translation of space leads to conservation of
linear momentum; the invariance under rotational motion leads to conservation of angular
momentum and the invariance under moving coordinates leads to linear motion of the
center of mass. Emmy Noether constructed an expression that described these four cases

as

_

uv —
T oK

0"p — g*'L (14)
Applying this relation to construct T#¥ , where T*V is called canonical stress tensor
. . , 2
pégavs —A(5+¢&+1) gvave
o ’ '2 ’
+61g* "0 — 22 (5 +& + 1 )n'gon

as an example

THY = (15)

o . A (1o , 2y 2
TOOZ%(€2+n2)+E(%+§' +7’7> = H(16)

T =-2(5+ §’+§) & +2n7)(17)

T = p.( +17)(18)

5-Fractional Formulation of Piano String Lagrangian Density
The Lagrangian density of the Piano string has the form as in equation ().Using the definition

of the Riemann-Liouville fractional Derivative, this Lagrangian density takes the form

o

£ =2[(,088) + (womn)’]| - 2[5 + Loz +2(Lomn)’] (9)
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Now let us start with a definition of fractional piano string Lagrangian density and use the
generalization formula of the variational principle to obtain the equations of motion from
piano string Lagrangian density.

Take the first field variable &, then

aL

Calculating these derivatives yields:

oL
=0 (1)
L a a
at (a(+aa€)) po +at +at 5(22)

0% (57555) = —2L+08(1088) + (L08n) .02 (Lo8m)] @3)
Substituting equations (21, 22, 23) in equation (20) we get

pe +0¢ +0(¢ — /1[+aa( +aa§) + (+0 77) +0§(+afé‘n)] = 0(24)
This represents the first equation of motion in fractional form for ¢ field.

Now use the general formula to obtain other equations of motion for the other fieldn , then
oL af 0oL oL _
ot |0 () + 0% () = 0@

calculating these derivatives
oL
e 0 (26)

a 9L — a a
0 (575m5) = P 408 9En@T)

8 (o )__A{ [5+ 2a88 +5 ()] (Lo oem) }(28)

o(0%n) +[ 0% (+058) + (+08m) 402 (+05n)] +08n

Substituting these equations in the main equation, we get:
° 1 2
|5+ soge +35(o8n) | (Lo cogn)
+[ +a§(( +69?E) + ( +6,?77) +afcz( +a;cx77)] +0¥n
This equation represents the second equation of motion for second field 7.

po+0¢ +0¢M — A{ } = 0(29)
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6-HAMILTONIAN FORMULATION OF FIELD WITHIN RIEMANN-LIOUVILLE
FRACTIONAL DEFINTION

It is possible to derive the Hamiltonian equation in the fractional form for the field system
such as integer order field. A continuous system with Lagrangian density given in terms of

the dynamical field variables, generalized coordinates and its derivatives defined as 1%

L= L(fp' aDg/fp' aDa]c/fp' Mo, aDZ/np' aDIUp)(30)

Now we construct the fractional Hamiltonian equations within Riemann-Liouville fractional
derivative from a given Lagrangian density, define the fractional canonical momentum

densities as

T[(I aad) )(31)

T
Tae = 50075 = P4(32)
oL

Tay = 3(,08n) = p1(33)

Then the Hamiltonian®®

H = Yyeeo(a) 105 — L(34)

H = (mag) 495 + (a) 080 — L£(35)

Take the total derivative of both sides

oL oL

55 48 — 5o dn, -

dH = dn(,[f L0 €+dnan +0fn — on,

gt (a085) =

6( o )d( 205M,) — 2 dt(36)

But the Hamiltonian is function of the form:

H=H (Ep} Np, 77-'0,'5; Mg, » t, aagfp' aagnp)@?)

So, the total differential of the Hamiltonian takes the form

265



2018 (1) sl (4) A LI oLl il ol e mllisles s andiiy o pstisms e ds o,ﬁﬂwd@.é\h(?ns

OH OH 0H 0H 0H
dH = adfp + %dnp + _a”af dT[aE + _a”an dTl.'a77 + E

a
dt +—— aas d 4088, +

Compare the last two equations to get the Hamiltonian equations of motion

oH aL [ OH _ a 0H oL

9. ¢ |ome, — tTR ag T
[B_H _ o 9, I ag 8 40%¢, a( axf”)(gg)
at ot |0H _ oL | 0H a OH

67]p 67]p a”an ot n 0 aagnp 6( aaxnp)

s = 2[(200)" + Goen)' |+ 2 [+ wogs +2 Gagn) | o)

7-Noether’s theorem in fractional form

Noether’s theorem is one of the most important theorems in mechanics which tells us that all
conservation laws related to the invariance of the action under a family of transformations.
Assume the system is invariant under translation in space-time. For fractional Piano string,

Lagrangian density is function of

L= L(fpr aDg/gp' aDg]c/gp' Np» aDZ/np' aD;?c/T]p)(Ll‘l)

The variational of £ can be written as13-14

0L = oL 6&, + 0L é
98, P T am, °p
+ 6 ,08E + 6 ,0fn + 6 L 05E + 6 L0F
9 ,.0%¢ +07¢ 9,957 +0t 1M 9 .0%¢ +0x'¢ 9 .9%7 +0x7

(42)
Using Euler-Lagrange equation defined in equations (20), we obtain:

0L aBr L 9L B g | =
O |aC o5z, % S0 T 5C 0,y @0c e — 9L |=0 (43)
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Which can be written like [d,T*” = 0], where T*" fractional stress tensor for two ¢,,7,
fields, andg”¥ metric tensor(g"*V = 1,-1,—-1,—1)
Applying equation (43) enables us to determine the scalar fractional canonical stress tensor,

as follows

THY — oL oL B

T 5 a2 £ _ T
a(aaggﬂgp) a va(p ( T p) aOx,Mp — g L£(44)

|[ p(+088) g™ (+05¢) - A( + (ogg) + L2 "")2> (+058) ]I
—| |(45)
'l+e( i)™ o) -4 (54 oz + L g agn)

As an example

To « 1 RY: 2
=2[(,088)" + (108n)°| + 2[5 + Lo +1(105m)"| @e)
Which is of similar value to the fractional Hamiltonian result from Piano string Lagrangian

density.

T = p. [( aag{p)z + ( aagnp)z](47)

a 2
1= 2 (Z 4 (028,) + B ) (Lase, + 2 ,08m,) (48)
1 2

The connection of time-time and space-time components of T#’with the field energy and
momentum density suggests that there is a covariant generalization of the conservation laws.

The covariant form of the conservation law aa;g‘”TP“’ = 0 leads to conservation of total

energy and momentum upon integration over the spaces.

8-CONCLUSION

For a given Lagrangian density, we obtained that the fractional Euler-Lagrange equation and
fractional Hamiltonian equation of motion lead to the same result.The classical Euler-
Lagrange equation was obtained as a particular case of the fractional formulation. The
fractional conserved quantities are derived from the Piano string Lagrangian density since it

is invariant under space time transformation.
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